
Fermilab FERMILAB-Pub-02/005-T January 2002

1

FermiQCD: A tool kit for parallel lattice QCD applications

[http://latticeqcd.fnal.gov/software/fermiqcd/]

Massimo Di Pierroa�

a Fermilab, Kirk and Pine St., Batavia, Illinois 60563, USA

We present here the most recent version of FermiQCD, a collection of C++ classes, functions and parallel

algorithms for lattice QCD, based on Matrix Distributed Processing. FermiQCD allows fast development of

parallel lattice applications and includes some SSE2 optimizations for clusters of Pentium 4 PCs.

1. Introduction

FermiQCD is a collection of classes, functions
and parallel algorithms for lattice QCD [1], writ-
ten in C++. It is based on Matrix Distributed
Processing2 (MDP) [2]. The latter is a library
that includes C++ methods for matrix manipu-
lation, advanced statistical analysis (such as Jack-
knife and Boostrap) and optimized algorithms for
interprocess communications of distributed lat-
tices and �elds. These communications are im-
plemented using Message Passing Interface (MPI)
but MPI calls are hidden to the high level algo-
rithms that constitute FermiQCD.
FermiQCD works also on single processor com-

puters and, in this case, MPI is not required.

2. FermiQCD overview

The basic �elds de�ned in FermiQCD are:

class gauge field:

List of implemented algorithms:

� heatbath algorithm

� anisotropic heatbath

� O(a2) heatbath

These algorithms work for arbitrary gauge groups
SU(Nc), for arbitrary lattice dimensions and
topologies. FermiQCD also supports arbitrarily

�Poster presented at Lattice 2001, Berlin
2http://www.phoenixcollective.org/mdp

twisted boundary conditions for large � compu-
tations and studies of topology.

class fermi field:

List of implemented algorithms:

� multiplication by Q = (D= + m), for Wil-
son and Clover actions, for isotropic and
anisotropic lattices

� minimal residue inversion for Q

� stabilized biconjugate gradient (BiCGStab)
inversion for Q

� Wupperthal smearing for the �eld

� stochastic propagators

These algorithms work for arbitrary gauge groups
SU(Nc) and for arbitrary topologies in 4 dimen-
sions. The multiplication by Q, clover (isotropic
and anisotropic), for SU(3), is optimized using
Pentium 4 SSE2 instructions in assembler lan-
guage. This implementation is based on the
assembler macro functions written by Martin
L�uscher [3]

class fermi propagator:

This is an implementation of ordinary quark
propagators. A fermi propagator can be gen-
erated using any of the inversion algorithms of a
fermi field.

class staggered field:

Kogut-Susskind (KS) fermion. List of imple-
mented algorithms:

2

� multiplication by Q, for unimproved and
O(a2) (Asqtad) improved actions [4]

� BiCGStab inversion for Q

� BiCGStab inversion for Q using the UML
decomposition [5]

� function make meson

These algorithms work for arbitrary gauge groups
SU(Nc) and for an arbitrary even number of di-
mensions (except make meson). The multiplica-
tion by Q, both improved and unimproved, for
SU(3), is optimized using Pentium 4 SSE2 in-
structions in assembler language. In the unim-
proved case only half of the SSE2 registries are
used and there is room for an extra factor two in
speed. The function make meson builds any me-
son propagator (made out of staggered quarks)
for arbitrary Spin
Flavour structure. This algo-
rithm is described in ref. [6]

class staggered propagator:

This is an implementations of the staggered
propagator consisting of 16 sources contained in
a 24 hypercube at the origin of the lattice. A
staggered propagator can be used to propagate
any hadron from the hypercube at the origin of
the lattice to any other hypercube without extra
inversions.

All �elds in FermiQCD inherit the standard
I/O methods of MDP (save and load) and the
�le format is independent on the lattice partition-
ing over the parallel processes. These I/O func-
tions, as well as all the FermiQCD algorithms,
are designed to optimize interprocess communi-
cations.

3. Example

We present here, as an example, a full program
that generates 100 SU(3) gauge con�gurations
(U), starting from a hot one. On each con�gura-
tion it computes a pion propagator (pion) made
of O(a2) improved quark propagators and prints
it out. These propagators are computed using the
SSE2 optimized clover action and the BiCGStab
inversion algorithm. The program works in par-
allel.

#define PARALLEL

#include "fermiqcd.h"

void main(int argc, char **argv) {

mpi.open_wormholes(argc, argv);

int t,a,b,conf;

int nc=3, box[4]={16,8,8,8};

generic_lattice L(4,box);

gauge_field U(L,nc);

fermi_propagator S(L,nc);

site x(L);

float pion[16];

U.param.beta=5.7;

S.param.kappa=0.1345;

S.param.cSW=1.5;

default_fermi_action=

mul_Q_Luscher;

default_inversion_method=

BiCGStab_inversion;

set_hot(U);

heatbath(U,100);

for(conf=0; conf<100; conf++) {

heatbath(U,30);

compute_em_field(U);

generate(S,U);

for(t=0; t<16; t++) pion[t]=0;

forallsites(x)

for(a=0; a<4; a++)

for(b=0; b<4; b++)

pion[x(TIME)]+=

real(trace(S(x,a,b)*

hermitian(S(x,b,a))));

mpi.add(pion, 16);

if(ME==0) for(t=0; t<16; t++)

printf("%i %f\n", t, pion[t]);

}

mpi.close_wormholes();

}

Comments:

� L is the user-de�ned name of the lattice
(16� 83)

3

0 5000 10000 15000 20000
Lattice Volume

0

1

2

3

T
im

e
pe

r
si

te
 (

µs
ec

)

Wilson
Clover
KS
Asqtad KS

Figure 1. Time per site in �sec for mul Q Luscher

(Wilson, clover, KS and Asqtad KS in single pre-
cision).

� U, S and x are the gauge �eld, the fermi
propagator and an auxiliary site variable
de�ned on the lattice L

� default fermi action is a pointer to the
function that implements the action to be
used. mul Q Luscher is one of the the built-
in clover actions, optimized for Pentium 4.

� default inversion method is a pointer to
the function that implements the inversion
algorithm (minimal residue or BiCGStab)

� compute em field computes the chromo-
electro-magnetic �eld required by the ac-
tion3.

� generate computes the quark propagtor S
on the given gauge con�guration U.

� forallsites(x) is a parallel loop on x.
Each processor loops on the local sites.

� mpi.add(pion,16) sums the vector
pion[16] in parallel.

3The chromo-electro-magnetic �eld is a member variable

of the gauge �eld. FermiQCD has almost no global vari-

ables except pointers to the functions that implement the

algorithms.

0 5000 10000 15000 20000
Lattice Volume

0

1

2

3

4

5

T
im

e
pe

r
si

te
 (

µs
ec

)

Wilson (double)
Clover (double)
KS (double)
Asqtad KS (double)

Figure 2. Time per site in �sec for mul Q Luscher

(Wilson, clover, KS and Asqtad KS in single pre-
cision).

� if(ME==0) guarantees that only one proces-
sor performs the output.

4. Benchmarks

In �g. 1 and �g. 2 we report some benchmarks
for the multiplication by Q of a fermionic �eld,
for the di�erent actions (using a single CPU Pen-
tium 4 PC running at 1.4 GHz, Linux 2.4 and gcc
2.95.3).

This work was performed at Fermilab (U.S. De-
partment of Energy Lab (operated by the Univer-
sity Research Association, Inc.), under contract
DE-AC02-76CHO3000.

REFERENCES

1. M. Di Pierro, hep-lat/0009001. (Lattice QCD
tutorial with examples in FermiQCD)

2. M. Di Pierro, hep-lat/0004007. (Updated tu-
torial on MDP) To be published on CPC.

3. M. L�uscher, these proceedings

4. G. P. Lepage, Phys.Rev. D59 (1999) 074502
5. K. Orginos at al. (MILC), Phys.Rev. D59

(1999) 014501
6. M. Di Pierro, in preparation

